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1 Basics of Lattice Models

1.1 Lattices

In the derivation of van der Waal’s equation, we used a discretization and let ε→ 0. Now
we will begin looking at lattice models, where there is a fixed lattice; this precludes any
notion of particles getting too close to each other. Consider boxes Bn ⊆ Zd, which are
cuboids with all sides→∞. At each site i ∈ Bn, the set of possible “local states” is a finite
set A (the alphabet). So the microscopic states of the system are elements ω ∈ Ωn = ABn .

Example 1.1 (Lattice gases). If A = {0, 1}, we can interpret “ωi = 1” as “there is a
particle at i” and interpret “ωi = 0” as ‘there is no particle at i.”

Example 1.2 (Magnetizable solid). If A = {−1, 1}, we can interpret ωi as the “direction”
of a magnetic spin located at i inside a magnetizable solid. (More realistic magnet models
allow A to be a sphere in R3.)

Example 1.3. More generally, we could have A = {0, a1, a2, . . . , ak}. Here, 0 represents
the absence of a particle, and the ai represent possible internal states of particles.

1.2 Interactions

The total energy of ω ∈ Ωn will be given by an interaction.

Definition 1.1. An interaction is a family (ϕF : F ⊆ Zd, F finite), where

1. ϕF : AF → R

2. translation invariant:

ϕF ((av)v∈F︸ ︷︷ ︸
∈AF

) = ϕF+u((av+u)v∈F︸ ︷︷ ︸
∈Au+F

).
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Then for ω ∈ Ωn, its total (potential) energy is

ΦBn(ω) =
∑

F⊆Bn

ϕF (ωF ).

Example 1.4. Most simply, a pair interaction has ϕF = 0 unless |F | = 1 or |F | = 2.
For example, as in our study of van der Waal’s equation, we could take A = {0, 1} and

ϕF (ω) =

{
−ϕr(i− j)ωiωj F = {i, j}
0 otherwise.

1.3 Interaction decay

We want to understand asymptotic behavior as Bn → Zd. This is known as the thermo-
dynamic limit. To get a meaningful limit, we need enough decay in interaction strength
with distance. Possible additional assumptions are:

1. Finite range: There exists some R <∞ such that ϕF = 0 if diamF ≥ R.

2. A bit more general: ϕ is in the big space of interactions if
∑

F30
‖ϕF ‖∞
|F | <∞. This

guarantees “finite energy per particle.”

3. ϕ is in the small space of interactions if
∑

F30 ‖ϕF ‖∞ <∞. This is more restrictive
than the big space.

Note that the big space and small space of interactions are Banach spaces, and these
quantities are norms. We will tend to prove results assuming finite range, with the under-
standing that a bit more careful reasoning will work for the more general assumptions.

So now we need to look at sets of the form

ΩBn(ϕ, I) =

{
ω ∈ ABn :

ΦBn(ω)

|Bn|
∈ I
}
,

for I ⊆ R. Here, we are keeping track of energy per unit volume.
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1.4 Observables

Next, we need a notion of macroscopic observables. We will study these as “averages over
Bn.”

Definition 1.2. An observable is a function ψ : AW → R with W ⊆ Zd, and

ΨBn(ω) =
∑

i+W⊆Bn

ψ(ωi+W ).

Example 1.5. If A = {0, 1}, W = {0}, and ψ(a) = a, then

ΨBn(ω) =
∑
i∈Bn

ωi = # particles in Bn.

1.5 Entropy

We want to study the growth of the cardinality of

ΩBn(ϕ, I;ψ, J) =

{
ω ∈ ABn :

ΦBn(ω)

|Bn|
∈ I, ΨBn(ω)

|Bn|
∈ J

}
,

where I is an open interval ⊆ R, and J is an open convex subset of Rn.

Theorem 1.1. Let sn(I, J) = log |ΩBn(ϕ, I;ψ, J)|. Then there exists a concave and upper
semicontinuous function s : R× Rr → [−∞,∞) such that

sn(I, J) = |Bn| · sup
(x,y)∈I×J

s(x, y) + o(|Bn|).

We will prove this assuming ϕ has finite range. In this case, we will simplify our work
by studying ∑

i+F⊆Bn
ϕF (ωi+F )

|Bn|
∈ IF

for every diam(F ) < R, rather than

∑
equiv. classes of
diamF < R up
to translation

∑
i+F⊆Bn

ϕF (ωi+F )

|Bn|
∈ I.

This lets us write

ΩBn(ψ, J) =

{
Ψn(ω)

|Bn|
∈ J

}
for a single observable ψ : AW → Rr′ with r′ bigger than r. Let’s restate the theorem:
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Theorem 1.2. In the setting above,

sn(ψ, J) = |Bn| · sup
x∈J

s(x) + o(|Bn|),

where s : Rr → [−∞,∞) is concave and upper semicontinuous.

We would like to show that Sn(ψ, J) is superadditive. In fact, previously, we had

sn(ψ, J) + sm(ψ, J ′) ≤ sn+m

(
ψ,

n

n+m
J +

m

n+m
J ′
)

for non-interacting systems. First, we need a version for cuboids, something like

sB(ψ, J) + sB′(ψ, J ′) ≤ sB∪B′

(
ψ,

|B|
|B|+ |B′|

J +
|B′|

|B|+ |B′|
J ′
)
,

when

But
ΨB∪B′(ω, ω′) = ΨB(ω) + ΨB′(ω′) + boundary terms.

We will have to take care of these boundary terms of make this argument work in this
case.

4


	Basics of Lattice Models
	Lattices
	Interactions
	Interaction decay
	Observables
	Entropy


